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1. Introduction

In this article, we study an inverse problem for a fractional p -Laplace equation.
To formulate the problem, let us consider a partial differential equation (PDE) of
the form

(1.1) Divs
(
σ|dsu|p−2dsu

)
= 0,

where 1 < p < ∞, σ = σ(x, y) : Rn × Rn → R satisfies the uniform ellipticity
condition

(1.2) λ ≤ σ(x, y) ≤ λ−1, for all x, y ∈ Rn,
1
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and for some constant λ > 0. Later we call this operator appearing in (1.11.1) weighted
fractional p -Laplacian. Here, dsu denotes the fractional s-gradient and Divs is its
adjoint, which is the fractional s-divergence, with respect to the measure

dµ =
dxdy

|x− y|n
on Rn × Rn.

More concretely, for any function u : Rn → R and s ∈ (0, 1), the fractional s-
gradient and s-divergence could be defined by

dsu(x, y) =
u(x)− u(y)

|x− y|s
and 〈Divs u, ϕ〉 =

ˆ
R2n

u(x, y)dsϕ(x, y)

|x− y|n
dxdy,

respectively, for x, y ∈ Rn and for all ϕ ∈ C∞c (Rn) (see for example [MS18MS18] and
Section 22 for detailed definitions). The weighted fractional p -Laplacian is weakly
defined by 〈

Divs(σ|dsu|p−2dsu), ϕ
〉

:=

ˆ
R2n

σ(x, y)|u(x)− u(y)|p−2 (u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+sp
dxdy,

for any ϕ ∈ C∞c (Rn).
Next, we are going to formulate an inverse problem related to (1.11.1). The ob-

servations of our inverse problem are encoded in the Dirichlet-to-Neumann (DN)
map, which is formally defined by

Λσ(f) = Divs
(
σ|dsu|p−2dsu

)∣∣
Ωe

where Ωe := Rn \ Ω denotes the exterior domain and uf is the unique solution of

(1.3)

{
Divs(σ|dsu|p−2dsu) = 0 in Ω,

u = f in Ωe.

Here we have assumed the well-posedness of (1.11.1) at the moment (the proof will
be given in Section 33) and that the weighted fractional p -Laplacian of u induces at
least a distribution on Ωe. Then we ask the following question:

Question 1. Let W ⊂ Ωe be a given nonempty open set and assume that the
coefficients σ1, σ2 satisfy Λσ1

f |W = Λσ2
f |W , for all f ∈ C∞c (W ). If Σj : Rn → R

is given by Σj(x) = σj(x, x) for j = 1, 2, can we conclude Σ1 = Σ2 in W?

In the special case of coefficients of the form σ(x, y) = γ1/2(x)γ1/2(y) this gener-
alizes recent results for the fractional conductivity equation (i.e. p = 2) by the last
author (see [RZ22bRZ22b, RZ22aRZ22a, CRZ22CRZ22, RZ22cRZ22c, CRTZ22CRTZ22] for the elliptic and [LRZ22LRZ22]
for the parabolic case).

As s = 1, the related inverse problem to the equation

(1.4) div
(
γ|∇u|p−2∇u

)
= 0

is the so called (classical) p -Calderón problem, where γ : Rn → R is a positive scalar
function11, and we next discuss about it.

1.1. The p -Calderón problem. In the p -Calderón problem the DN map is strongly
given by

f 7→ Λpγf = γ|∇uf |p−2∂νuf
∣∣
∂Ω
,

where uf is the unique solution to

(1.5)

{
div
(
γ|∇u|p−2∇u

)
= 0 in Ω,

u = f on ∂Ω.

1In this paper, we use the notation γ = γ(x) : Rn → R and σ = σ(x, y) : R2n → R.
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Now the inverse problem is to ask whether one can determine the coefficient γ
uniquely from the knowledge of the (nonlinear) DN map Λpγ? Note that in the
special case p = 2 this reduces to the classical Calderón problem (see [Cal06Cal06, KV84KV84,
SU87SU87]).

Moreover, if γ = 1, the partial differential operator in (1.51.5) becomes the p -
Laplacian ∆pu = div(|∇u|p−2∇u), which appears in the study of nonlinear di-
electrics [GK03GK03, TW94aTW94a, TW94bTW94b, LK98LK98], plastic moulding [Aro96Aro96], nonlinear fluids
[AR06AR06, AJ92AJ92, GR03GR03, Idi08Idi08] and others. In [SZ12SZ12] the authors proved by using
p -harmonic functions (i.e. functions solving (1.41.4)) introduced by Wolff [Wol07Wol07]
that the nonlinear DN map Λpγ determines uniquely γ on the boundary. Later,
Brander showed in [Bra16Bra16] that the DN map also determines the normal deriva-
tive ∂νγ on ∂Ω. These results can be seen as a zeroth and first order analogue of
the boundary determination result of Kohn and Vogelius [KV84KV84] for the Calderón
problem. Since not all coefficients of the Taylor series around a boundary point,
as in the classical Calderón problem, are known from the DN map Λpγ , it can-
not be used to determine real-analytic coefficients in the interior of Ω. Meanwhile,
the authors [BHKS18BHKS18, GKS16GKS16, BKS15BKS15, KW21KW21, BIK18BIK18] studied inverse problems for
(weighted) p -Laplace equations by utilizing monotonicity methods. Recently, in the
work [CF24CF24], the authors recover the leading coefficient for the weighted p -Laplace
equation in the plane, without assuming additional conditions for the leading co-
efficient, and they also showed another uniqueness result in the dimension 3 and
higher with some suitable assumptions.

1.2. Nonlocal inverse problems. In recent years, many different Calderón type
inverse problems for nonlocal operators have been studied. The prototypical ex-
ample is the inverse problem for the fractional Schrödinger operator (−∆)s + q
with q ∈ L∞(Ω), which was first considered in [GSU20GSU20] and initiated many of
the later developments. The main ingredients in solving this Calderón problem
are an Alessandrini identity, the UCP (unique continuation property) and the
closely related Runge approximation. It is worth noticing that the UCP and the
approximation are much stronger in the nonlocal case than in the local ones, which
is mainly possible, because solutions to (−∆)s + q are much less rigid than the
ones to the local Schrödinger equation −∆ + q. By using a similar approach,
one can solve a variety of inverse problems for nonlocal operators whose corre-
sponding local counterpart is still open. For further details we refer to the works
[BGU21BGU21, CMR21CMR21, CMRU22CMRU22, GLX17GLX17, CL19CL19, CLL19CLL19, CRZ22CRZ22, CLR20CLR20, FGKU21FGKU21,
HL19HL19, HL20HL20, GRSU20GRSU20, GU21GU21, Gho22Gho22, Lin22Lin22, Lin23Lin23, LL22aLL22a, LL22bLL22b, LLR20LLR20, LLU22LLU22,
KLW22KLW22, RS20RS20, RS18RS18, RZ22aRZ22a, RZ22cRZ22c, RZ22bRZ22b]. We point out that most of these
works consider nonlocal inverse problems in which one recovers lower order coef-
ficients instead of principal order like in the classical Calderón problem. On the
other hand, in the articles [GU21GU21, LLU22LLU22, RZ22cRZ22c, RZ22bRZ22b, RZ22aRZ22a] the authors study
nonlocal inverse problems where one is interested in determining leading order co-
efficients and hence they can be seen as full nonlocal analogues of the classical
Calderón problem.

Let us mention that in all the previous inverse problems the leading order op-
erator of the underlying nonlocal PDEs is linear. A first step into the direction
of considering nonlinear nonlocal leading order operators was taken in the work
[KRZ22KRZ22] by the first and the last author. A crucial advantage of the operators L
studied in this work is that they have the UCP, that is, if u : Rn → R is a suffi-
ciently regular function and Lu = u = 0 in an open set V ⊂ Rn, then u ≡ 0 in Rn.
But in contrast the UCP for the operators in (1.41.4) is only known to hold in n = 2
dimensions but for n ≥ 3 it is a difficult open problem. Similarly, it is not known
whether the operators in (1.11.1) have the UCP.
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1.3. Main results. The main theorem of this article is the following exterior re-
construction result on the diagonal extending [CRZ22CRZ22, Proposition 1.5].

Theorem 1.1 (Exterior reconstruction on the diagonal). Let Ω ⊂ Rn be a bounded
open set, W ⊂ Ωe a nonempty open set, 0 < s < 1, 1 < p <∞ and x0 ∈ W b Ωe.
Then there exists a sequence (ΦN )N∈N ⊂ C∞c (W ) such that

(i) for all N ∈ N it holds [ΦN ]W s,p(Rn) = 1,

(ii) for all 0 ≤ t < s there holds ‖ΦN‖W t,p(Rn) → 0 as N →∞
(iii) and supp (ΦN )→ {x0} as N →∞.

Moreover, if σ : Rn × Rn → R satisfies uniformly elliptic condition (1.21.2) such that
(σ(x, ·) : W → R)x∈Rn is equicontinuous at x0 and σ(·, x0) ∈ C(W ), then there
holds

(1.6) σ(x0, x0) = lim
N→∞

〈ΛσΦN ,ΦN 〉 .

As an immediate consequence of the formula (1.61.6), we obtain the following results
on exterior determination, exterior stability and global uniqueness for real-analytic
coefficients.

Proposition 1.2 (Exterior determination on the diagonal). Let Ω ⊂ Rn be a
bounded open set, W ⊂ Ωe be a nonempty open set, 0 < s < 1 and 1 < p < ∞.
Assume that σj : Rn × Rn → R satisfies the conditions of Theorem 1.11.1 for j = 1, 2
and set Σj(x) := σj(x, x) for x ∈ Rn, j = 1, 2. Suppose Λσ1

f |W = Λσ2
f |W , for all

f ∈ C∞c (W ), then there holds Σ1(x) = Σ2(x) for all x ∈W .

Proposition 1.3 (Exterior stability on the diagonal). Let Ω ⊂ Rn be a bounded
open set, W ⊂ Ωe a nonempty open set, 0 < s < 1 and 1 < p < ∞. Assume
that σj : Rn × Rn → R satisfies the conditions of Theorem 1.11.1 for j = 1, 2 and set
Σj(x) = σj(x, x) for x ∈ Rn, j = 1, 2. Then we have

‖Σ1 − Σ2‖L∞(W ) ≤ ‖Λσ1
− Λσ2

‖
W̃ s,p(W )→(W̃ s,p(W ))∗

.

Proposition 1.4 (Global uniqueness on the diagonal). Let Ω ⊂ Rn be a bounded
open set, W ⊂ Ωe a nonempty open set, 0 < s < 1 and 1 < p < ∞. Assume
that σj : Rn × Rn → R satisfies the conditions of Theorem 1.11.1 for j = 1, 2 and set
Σj(x) = σj(x, x) for x ∈ Rn, j = 1, 2. If Λσ1f |W = Λσ2f |W for all f ∈ C∞c (W ),
and Σj are real-analytic for j = 1, 2 then Σ1 = Σ2 in Rn.

Observe that Proposition 1.41.4 implies several global uniqueness results when one
assumes that the coefficients have a product structure. For example, if for j = 1, 2
the coefficients σj(x, y) can be written as σj(x, y) = F (γj(x))F (γj(y)) for some real
analytic functions γj : Rn → R, F : R+ → R+ satisfying

(i) γj is uniformly elliptic for j = 1, 2,
(ii) F is injective
(iii) and for any compact interval [a, b] ⊂ R+ there exists c > 0 such that

F (ξ) ≥ c for all ξ ∈ [a, b].

Then Λσ1
f |W = Λσ2

f |W for all f ∈ C∞c (W ) implies γ1 = γ2 in Rn. As a special

case one could take F (t) =
√
t and recovers the global uniqueness result in [CRZ22CRZ22,

Theorem 1.3] for real-analytic conductivities.

1.4. Organization of the article. We first recall preliminaries related to the
function spaces and nonlocal operators used throughout this work in Section 22.
Afterwards in Section 33 we establish well-posedness of the exterior value problem for
(1.11.1) and introduce the related DN map. The proof of the main result, Theorem 1.11.1,
are divided into several steps for better readability and given in Section 44. The
proofs of Proposition 1.21.2, 1.31.3 and 1.41.4 are given in Section 55.
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2. Preliminaries

Throughout this article Ω ⊂ Rn is always a bounded open set, where n ≥ 1 is
a fixed positive integer, and 0 < s < 1. In this section, we recall the fundamen-
tal properties of the classical fractional Sobolev spaces W s,p(Rn) and their local
analogues as well as introduce the nonlocal operators which will be used later on.

2.1. Function spaces. By L0(Ω) we label the space of (Lebesgue) measurable
functions on Ω. The classical Sobolev spaces of order k ∈ N and integrability
exponent 1 ≤ p ≤ ∞ are denoted by W k,p(Ω) and for k = 0 we use the convention
W 0,p(Ω) = Lp(Ω). Moreover, we let W s,p(Ω) stand for the fractional Sobolev
spaces, when s ∈ (0, 1) and 1 ≤ p < ∞. These spaces are also called Slobodeckij
spaces or Gagliardo spaces. If 1 ≤ p <∞ and s ∈ (0, 1), then they are defined by

W s,p(Ω) :=
{
u ∈ Lp(Ω) ; [u]W s,p(Ω) <∞

}
,

where

[u]W s,p(Ω) :=

(ˆ
Ω

ˆ
Ω

|u(x)− u(y)|p

|x− y|n+sp
dxdy

)1/p

is the so-called Gagliardo seminorm. The fractional Sobolev spaces are naturally
endowed with the norm

‖u‖W s,p(Ω) :=
(
‖u‖pLp(Ω) + [u]pW s,p(Ω)

)1/p

.

The space of test functions we are going to use later in the definition of weak
solutions to our PDEs is:

W̃ s,p(Ω) := closure of C∞c (Ω) with respect to ‖ · ‖W s,p(Rn).

Similarly, as the classical Sobolev spaces, the spaces W s,p(Rn) are separable for

1 ≤ p < ∞ and reflexive for 1 < p < ∞ (see [BH22BH22, Section 7]). Since W̃ s,p(Ω)
is a closed subspace of W s,p(Rn) it has the same properties. We remark that it is

known that W̃ s,p(Ω) coincides with the set of all functions u ∈W s,p(Rn) such that
u = 0 almost everywhere (a.e.) in Ωc, when ∂Ω ∈ C0, and with

W s,p
0 (Ω) := closure of C∞c (Ω) with respect to ‖ · ‖W s,p(Ω),

whenever Ω b Rn has a Lipschitz boundary (see [KLL22KLL22, Section 2]).

On these spaces W̃ s,p(Ω), the following Poincaré inequality holds:

Proposition 2.1 (Poincaré inequality, [KLL22KLL22, Theorem 2.8]). Let Ω b Rn, 0 <
s < 1 and 1 < p < ∞, then there exists a constant C = C(n, s, p, diam(Ω)) > 0
such that

(2.1) ‖u‖pLp(Rn) ≤ C[u]pW s,p(Rn)

for all u ∈ W̃ s,p(Ω).

Remark 2.2. In the above theorem and from now on, we write V b W for two
open subsets V,W ⊂ Rn, if V is compactly contained in W . By the proof of [KLL22KLL22,
Theorem 2.8] it follows that the optimal constant C∗ > 0 in (2.12.1) satisfies C∗ ≤
C1(diam(Ω))sp for some C1 = C1(n, s, p) > 0. Moreover, we used here that by
[KLL22KLL22, Theorem 2.8] the estimate (2.12.1) holds for all functions u ∈ C∞c (Ω), but

then the definition of the spaces W̃ s,p(Ω) implies that by approximation it holds for
all functions in this space.



6 M. KAR, Y.-H. LIN, AND P. ZIMMERMANN

2.2. Nonlocal operators. Next we introduce the fractional s-gradient ds, the
fractional s-divergence Divs, the fractional p -Laplacian (−∆)sp and the weighted
fractional p -Laplacians, which are the main object of study in this article.

For this purpose, let us denote by L0(
∧1
odRn) the space of measurable off di-

agonal vector fields, that is, the set of all functions F : Rn × Rn → R which are
measurable with respect to the measure dµ := dxdy

|x−y|n on Rn × Rn. We next give

rigorous definitions of s-gradient and s-divergence.

Definition 2.3 (s-gradient). For any 0 < s < 1, the s-gradient ds is defined by

ds : L0(Rn)→ L0(
∧1
odRn) such that

dsu(x, y) :=
u(x)− u(y)

|x− y|s
.

Moreover, one can immediately observe that it satisfies the product rule

(2.2) ds(ϕψ)(x, y) = ϕ(x)dsψ(x, y) + ψ(y)dsϕ(x, y),

for a.e. x, y ∈ Rn and ϕ,ψ : Rn → R. Moreover, we call the dual operation to the
s-gradient ds the s-divergence Divs.

Definition 2.4 (s-divergence). For any 0 < s < 1, the s-divergence is the un-

bounded operator Divs : L0
(∧1

od Rn
)
→ L0(Rn) given by

〈Divs F,ϕ〉 =

ˆ
R2n

F (x, y)dsϕ(x, y)

|x− y|n
dxdy, for all ϕ ∈ C∞c (Rn).

With these definitions at our disposal, we have a canonical relation to the frac-
tional Laplacian. In fact, there holds Divs ◦ ds = (−∆)s in the sense thatˆ

R2n

dsϕ(x, y) dsψ(x, y)

|x− y|n
dxdy =

ˆ
Rn

(−∆)sϕ(x)ψ(x) dx,

for all sufficiently regular functions ϕ,ψ : Rn → R, where (−∆)s denotes the frac-
tional Laplacian of order s ∈ (0, 1) (up to a normalization constant). On the other
hand, by the above definitions the operator Divs(|dsu|p−2dsu) is weakly given by〈

Divs(|dsu|p−2dsu), ϕ
〉

:=

ˆ
R2n

|u(x)− u(y)|p−2 (u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+sp
dxdy

for all ϕ ∈ C∞c (Rn).
Hence, up to normalization, this is precisely the weak formulation of the frac-

tional p -Laplacian. Furthermore, if the function u is sufficiently smooth then the
fractional p -Laplacian can be calculated in a pointwise sense by

(−∆)spu(x) = C P.V.

ˆ
Rn
|u(x)− u(y)|p−2u(x)− u(y)

|x− y|n+sp
dy

for some constant C = C(n, s, p) > 0 (see [dTGCV21dTGCV21]), where P.V. denotes the
Cauchy principal value. For example one can take u ∈ C∞c (Rn) with the additional
condition ∇u 6= 0 when p ∈ (1, 2

2−s ). The choice of the constant only becomes
important when one wants to prove the following limiting behavior{

(−∆)spu→ (−∆)su in Rn as p ↓ 2,

(−∆)spu→ (−∆)pu in Rn as s ↑ 1

(see [dTGCV21dTGCV21, Section 5]). Additionally, in the recent article [BPS16BPS16] (see also
[DNPV12DNPV12] or [BBM01BBM01]) the authors showed that if Ω b Rn is a bounded Lipschitz
domain then there holds

lim
s↑1

(1− s)[u]pW s,p(Rn) = C(n, p)‖∇u‖pLp(Ω),
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for some positive constant C(n, p) and all u ∈ W 1,p
0 (Ω). This observation is then

used to show that for fixed m ∈ N and 1 < p < ∞ the Dirichlet eigenvalues
(λsm,p(Ω))s∈(0,1) of the fractional p -Laplacian (after a suitable renormalization)

converge to a multiple of the Dirichlet eigenvalue λ1
m,p(Ω) of the p -Laplacian as s ↑ 1

and any sequence of normalized eigenfunctions (usm,p)s∈(0,1) (up to a subsequence)

converge to a normalized eigenfunction u1
m,p of the p -Laplacian as s ↑ 1.

In this work, we do not pursue the limit behaviour for either s ↑ 1 or p → 2,
but we will focus on the exterior determination results for the fractional p -Laplace
equation (1.31.3).

Furthermore, let us point out that there is also a Caffarelli–Silvestre extension
type result for the fractional p -Laplacian, when one replaces the weight y1−2s by
y1−sp (see [dTGCV21dTGCV21, Section 3]). Since in this result the function u is required to
be C2 regular, the authors do not see an immediate way to generalize to proof of the
UCP for the fractional Laplacian in [GSU20GSU20] (see also [KRZ22KRZ22]) to the fractional
p -Laplacian. Finally, note that if the fractional p -Laplacian would have the UCP,
then similar methods as in [KRZ22KRZ22] (see also [GKS16GKS16]) could be invoked to prove
global uniqueness of the coefficients.

Conventions. Throughout this article, we denote by Br(x0), Qr(x0) for r > 0,
x0 ∈ Rn the open ball of radius r with center x0 and the open cube of side length 2r
with center x0. Moreover, if x0 = 0, we simply write Br = Br(0) and Qr = Qr(0).

3. The forward problem and DN map

In this section we first state an auxilliary lemma which will be of constant use
in this work and then establish the well-posedness of the Dirichelt problem related
to the fractional p -Laplace equations (1.11.1). Finally, we introduce the DN map and
show that it induces a continuous map from the trace space to its dual.

3.1. Auxiliary lemma.

Lemma 3.1 (cf. [Sim78Sim78, eq. (2.2)], [GM75GM75, Lemma 5.1-5.2] and [SZ12SZ12, Appen-
dix A]). Let n ∈ N, 1 < p < ∞, then there exists a constant cp > 0 such that for
all x, y ∈ Rn, there holds

(3.1)
(
|x|p−2x− |y|p−2y

)
· (x− y) ≥ cp|x− y|p

if p ≥ 2 and

(3.2)
(
|x|p−2x− |y|p−2y

)
· (x− y) ≥ cp

|x− y|2

(|x|+ |y|)2−p

if 1 < p < 2. Moreover, for all 1 < p <∞, we have∣∣|ξ|p−2ξ − |η|p−2η
∣∣ ≤ Cp(|ξ|+ |η|)p−2|ξ − η|(3.3)

for all ξ, η ∈ Rn and some constant Cp > 0.

3.2. Well-posedness. Next we prove well-posedness of the forward problem. In
this work, we use the following notion of weak solutions:

Definition 3.2 (Weak solutions). Let 1 < p <∞, 0 < s < 1, Ω ⊂ Rn be a bounded
open set, and assume that σ : Rn×Rn → R satisfies the uniform ellipticity condition
(1.21.2). For any f ∈W s,p(Rn), we say that u ∈W s,p(Rn) is a weak solution to

(3.4)

{
Divs

(
σ|dsu|p−2dsu

)
= 0 in Ω,

u = f in Ωe,

if u is a distributional solution and u− f ∈ W̃ s,p(Ω).
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Remark 3.3. Observe that if u is a distributional solution of (3.43.4), then there holdsˆ
R2n

σ(x, y)|u(x)− u(y)|p−2 (u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+sp
dxdy = 0

for all ϕ ∈ W̃ s,p(Ω).

Theorem 3.4 (Well-posedness). Let 1 < p <∞, 0 < s < 1, Ω ⊂ Rn be a bounded
open set, and assume that σ : Rn×Rn → R satisfies the uniform ellipticity condition
(1.21.2). Then for any f ∈W s,p(Rn), there is a unique solution u ∈W s,p(Rn) of (3.43.4).
In fact, it can be characterized as the unique minimizer of the fractional p -Dirichlet
energy

Es,p,σ(v) :=

ˆ
R2n

σ|dsv|p dxdy

|x− y|n

over the class of all v ∈ W s,p(Rn) with prescribed exterior data v = f in Ωe.
Moreover, the unique solution satisfies the following estimate

(3.5) [u]W s,p(Rn) ≤ C[f ]W s,p(Rn)

for some C > 0 depending only on λ and p.

Remark 3.5. Let us observe that we can construct the solution u as the unique
minimizer of the functional Es,p,σ by the fact that our exterior condition f is such
that ˆ

Ωc×Ωc
σ(x, y)

|f(x)− f(y)|p

|x− y|n+sp
dxdy <∞.

If the exterior condition would be less regular one should only integrate over R2n \
(Ωc × Ωc) and impose the exterior value in the sense that u = f a.e. in Ωc

(cf. [RO16RO16, Section 3]).

Before giving the proof of this well-posedness result, let us make the following
elementary observation. The linear map T : W s,p(Rn) → Lp(Rn) × Lp(R2n) given
by

u 7→
(
u,
|u(x)− u(y)|
|x− y|n/p+s

)
,

where the target space is endowed with the usual product norm, is an isometry.
Thus, by arguing as in [Bre11Bre11, Proposition 8.1], one sees that W s,p(Rn) is separable

in the range 1 ≤ p < ∞ and reflexive when 1 < p < ∞. Now since W̃ s,p(Ω) is a
closed linear subspace of W s,p(Rn) it follows that it has the same properties on the
respective ranges.

Proof of Theorem 3.43.4. We proceed similarly as in [KRZ22KRZ22, Theorem 5.8]. First we
define the convex set

W̃ s,p
f (Ω) :=

{
u ∈W s,p(Rn) : u− f ∈ W̃ s,p(Ω)

}
⊂W s,p(Rn),

and observe that it is weakly closed in the reflexive Banach space W s,p(Rn). To see

this, assume that (uk)k∈N ⊂ W̃ s,p
f (Ω) converges weakly to some u ∈ W s,p(Rn) as

k → ∞. This implies that the sequence (uk − f)k∈N ⊂ W̃ s,p(Ω) converges weakly
to u− f ∈W s,p(Rn).

Next, since weak limits are contained in the weak closure, the weak closure of

convex sets coincide with the strong closure and W̃ s,p(Ω) is by definition a closed

subspace of W s,p(Rn), we obtain that u− f ∈ W̃ s,p(Ω). Hence, W̃ s,p
f (Ω) is weakly

closed in W s,p(Rn). Next note that there holds

|a± b|p ≥ 21−p|a|p − |b|p
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for all a, b ∈ R. Hence, the uniform elliptic condition (1.21.2) of σ and the Poincaré
inequality (Proposition 2.12.1) yield that

|Es,p,σ(u)| ≥ λ
(

21−p[u− f ]pW s,p(Rn) − [f ]pW s,p(Rn)

)
≥ λ

2p

(
[u− f ]pW s,p(Rn) + C‖u− f‖pLp(Rn)

)
− λ[f ]pW s,p(Rn)

≥ C‖u− f‖pW s,p(Rn) − λ[f ]pW s,p(Rn)

≥ C‖u‖W s,p(Rn) − c‖f‖pW s,p(Rn)

for all u ∈ W̃ s,p
f (Ω) and some constants C, c > 0 only depending on λ and p.

Therefore, the functional Es,p,σ is coercive on W̃ s,p
f (Ω), in the sense that

|Es,p,σ(u)| → ∞, when ‖u‖W s,p(Rn) →∞,

for u ∈ W̃ s,p
f (Ω). We also observe that by the assumptions on σ(x, y), the functional

Es,p,σ is convex and continuous on the closed, convex set W̃ s,p
f (Ω) ⊂W s,p(Rn). It

is known that this implies that Es,p,σ is weakly lower semi-continuous on W̃ s,p
f (Ω)

(for example, see [BP12BP12, Proposition 2.10]). Hence, using [Str08Str08, Theorem 1.2] we

see that there exists a minimizer u ∈ W̃ s,p
f (Ω) of Es,p,σ.

To proceed, let us show that the minimizer u ∈ W s,p(Rn) solves (3.43.4) in the

sense of distributions. Let ϕ ∈ C∞c (Ω) then there holds uε := u + εϕ ∈ W̃ s,p(Ω)
for any ε ∈ R. Moreover, by Hölder’s inequality and the dominated convergence
theorem, one can see that Es,p,σ is a C1−functional. Hence, the fact that u is a
minimizer implies that there holds

0 =
d

dε

∣∣∣∣
ε=0

Es,p,σ(uε)

= p

ˆ
R2n

σ(x, y)|u(x)− u(y)|p−2 (u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+sp
dxdy,

and the claim follows. It remains to prove that the minimizer u is unique. Let us
first show the assertion for the range 2 ≤ p <∞ and then for 1 < p < 2.

(i) First suppose that 2 ≤ p <∞. Let u, v ∈W s,p(Rn) and set

δx,yw := w(x)− w(y),

for any function w : Rn → R. Using the estimate (3.13.1) of Lemma 3.13.1, we
have the following strong monotonicity property
ˆ
R2n

σ
(
|δx,yu|p−2δx,yu− |δx,yv|p−2δx,yv

)
(δx,yu− δx,yv)

dxdy

|x− y|n+sp

≥λcp
ˆ
R2n

|δx,yu− δx,yv|p

|x− y|n+sp
dxdy

=λcp

ˆ
R2n

|(u(x)− u(y))− (v(x)− v(y))|p

|x− y|n+sp
dxdy

=λcp[u− v]pW s,p(Rn).

(3.6)

Now, if u, v ∈W s,p(Rn) are solutions to (3.43.4) then u−v ∈ W̃ s,p(Ω). Hence
the left hand side vanishes and by the Poincaré inequality (Theorem 2.12.1)
we can lower bound the right hand side by some positive multiple of ‖u−
v‖pLp(Rn) but this gives u = v a.e. in Rn.
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(ii) Next let 1 < p < 2. Using the same notation as before, we obtain by raising
the estimate (3.23.2) of Lemma 3.13.1 to the power p/2 the bound

cp/2p |a− b|p ≤
[
(|a|p−2a− |b|p−2b) · (a− b)

]p/2
(|a|+ |b|)(2−p) p2

for all a, b ∈ Rn. Now using Hölder’s inequality with 2−p
2 + p

2 = 1 and the
uniform ellipticity of σ, we deduce

λp/2cp/2p [u− v]pW s,p(Rn)

≤
ˆ
R2n

|δx,yu− δx,yv|p
dxdy

|x− y|n+sp

≤λp/2cp/2p

ˆ
R2n

[
(|δx,yu|p−2δx,yu− |δx,yv|p−2δx,yv)(δx,yu− δx,yv)

]p/2
· (|δx,yu|+ |δx,yv|)(2−p) p2 dxdy

|x− y|n+sp

≤λp/2cp/2p

∥∥∥(|δx,yu|+ |δx,yv|)(2−p) p2
∥∥∥
L

2
2−p (Rn;|x−y|−(n+sp))

·
∥∥∥[
(
|δx,yu|p−2δx,yu

−|δx,yv|p−2δx,yv
)

(δx,yu− δx,yv)]p/2
∥∥∥
L2/p(Rn;|x−y|−(n+sp))

≤cp/2p 2p−1
(

[u]pW s,p(Rn) + [v]pW s,p(Rn)

) 2−p
2

·

( ˆ
R2n

σ(|δx,yu|p−2δx,yu

− |δx,yv|p−2δx,yv)(δx,yu− δx,yv)
dxdy

|x− y|n+sp

)p/2
.

(3.7)

Now, arguing as for the previous case p ≥ 2, the right hand side vanishes

if u, v ∈ W s,p(Rn) are solutions to (3.43.4) as u − v ∈ W̃ s,p(Ω) and the left
hand side can be lower bounded by a positive multiples of ‖u − v‖pLp(Rn)

by using the Poincaré inequality again. Hence, we can conclude that u = v
a.e. in Rn.

To complete the proof, let us establish the estimate (3.53.5). By Remark 3.53.5, we

can test the equation (3.43.4) with any ϕ ∈ W̃ s,p(Ω) and in particular with u − f .
Using the uniform ellipticitiy (1.21.2), writing u = (u− f) + f and applying Young’s
inequality, we obtain

λ[u]pW s,p(Rn) ≤
ˆ
R2n

σ(x, y)
|u(x)− u(y)|p

|x− y|n+sp
dxdy

≤
ˆ
R2n

σ(x, y)|u(x)− u(y)|p−2 (u(x)− u(y))(u(x)− u(y))

|x− y|n+sp
dxdy

=

ˆ
R2n

σ(x, y)|u(x)− u(y)|p−2 (u(x)− u(y))(f(x)− f(y))

|x− y|n+sp
dxdy

≤ λ−1

ˆ
R2n

|u(x)− u(y)|p−1 |f(x)− f(y)|
|x− y|n+sp

dxdy

≤ ε[u]pW s,p(Rn) + Cελ
−p[f ]pW s,p(Rn)︸ ︷︷ ︸

ab≤εap+Cεbp
′ with 1/p+ 1/p′ = 1

,
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for any ε > 0, where Cε > 0 is a constant depending on ε. In particular, by choosing
ε = λ/2, we obtain [u]W s,p(Rn) ≤ C[f ]W s,p(Rn) for some C > 0 depending only on λ
and p. This proves the assertion. �

Next we introduce the abstract trace space:

Definition 3.6. Let Ω ⊂ Rn be an open set, 0 < s < 1 and 1 < p < ∞. Then

the abstract trace space Xs,p(Ω) is given by Xs,p(Ω) := W s,p(Rn)/W̃ s,p(Ω), and we
endow it with the quotient norm

‖f‖Xs,p(Ω) := inf
u∈W̃ s,p(Ω)

‖f − u‖W s,p(Rn).

Remark 3.7. Let us point out:

(i) In the above definition and later on we simply write f for an element in

Xs,p(Ω) instead of the more precise notation [f ]. Note that since W̃ s,p(Ω) is
a closed subspace of the Banach space W s,p(Rn), the abstract trace space is
again a separable, reflexive Banach space in the respective ranges 1 ≤ p <∞
and 1 < p <∞.

(ii) If Ω ⊂ Rn has a bounded Lipschitz continuous boundary then any f ∈
W s,p(Ωe) with dist(supp f, ∂Ω) > 0 corresponds to a unique equivalence
class in Xs,p(Ω) and the quotient norm is equivalent to the ‖ · ‖W s,p(Ωe)

norm. In fact, by [CRTZ22CRTZ22, Lemma 3.2] the zero extension f of f belongs to
W s,p(Rn) and satisfies ‖f‖W s,p(Rn) ≤ C‖f‖W s,p(Ωe). Hence, we implicitly

identify below f with the equivalence class [f ]. Moreover, by definition we
have ‖f‖Xs,p(Ω) ≤ ‖f‖W s,p(Rn) ≤ C‖f‖W s,p(Ωe). On the other hand, there

exists a sequence uk ∈ W̃ s,p(Ω), k ∈ N, such that ‖f − uk‖W s,p(Rn) →
‖f‖Xs,p(Ω) as k →∞. Since ∂Ω has measure zero, we know that uk vanish
a.e. in Ωe and thus there holds

‖f‖W s,p(Ωe) = ‖f − uk‖W s,p(Ωe)
≤
∥∥f − uk∥∥W s,p(Rn)

→
∥∥f∥∥

Xs,p(Ω)

as k →∞. This shows that these two norms are equivalent.

We have the following uniqueness result:

Corollary 3.8. Let 1 < p < ∞, 0 < s < 1, Ω ⊂ Rn a bounded open set and
assume that σ : Rn × Rn → R satisfies the uniform ellipticity condition (1.21.2). Let
uj ∈ W s,p(Rn) be the unique solutions of (3.43.4) with exterior values fj ∈ W s,p(Rn)

for j = 1, 2. If f1 − f2 ∈ W̃ s,p(Ω), then u1 = u2.

Proof. By assumption we have

u1 − u2 = (u1 − f1)− (u2 − f2) + (f1 − f2) ∈ W̃ s,p(Ω).

Hence, arguing as in the proof of Theorem 3.43.4, the strong monotonicity properties
(3.63.6) for p ≥ 2, and (3.73.7) for 1 < p < 2, respectively, show that u1 = u2. �

3.3. DN maps. With Theorem 3.43.4 at hand, we can introduce the DN map Λσ
to formulate the inverse problem. If f ∈ W s,p(Rn), then the DN map is formally
defined by

(3.8) Λσ(f) = Divs
(
σ|dsuf |p−2dsuf

)∣∣
Ωe
,

where uf ∈W s,p(Rn) is the unique solution of

(3.9)

{
Divs

(
σ|dsu|p−2dsu

)
= 0 in Ω,

u = f in Ωe,
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(cf. Theorem 3.43.4). As the solution uf is usually not regular enough to justify the
pointwise definition (3.83.8), we define it in general in the distributional sense by

(3.10) 〈Λσ(f), g〉 :=

ˆ
Ωe

Λσ(f)g dx :=

ˆ
R2n

σ |dsu|p−2
dsu dsg

dxdy

|x− y|n
,

where f, g ∈ Xs,p(Ω). We have:

Proposition 3.9 (DN maps). Let 1 < p <∞, 0 < s < 1, Ω ⊂ Rn a bounded open
set and assume that σ : Rn × Rn → R satisfies the uniform ellipticity condition
(1.21.2). Then the DN map Λσ introduced via (3.103.10) is a well-defined operator from
Xs,p(Ω) to (Xs,p(Ω))∗ and satisfies the estimate

‖Λσ(f)‖(Xs,p(Ω))∗ ≤ C‖f‖
p−1
Xs,p(Ω)

for all f ∈ Xs,p(Ω) and some C > 0. Here (Xs,p(Ω))∗ denotes the dual space of
Xs,p(Ω).

Proof. First note that by Corollary 3.83.8 for any f ∈ Xs,p(Ω), there is a unique
solution uf ∈ W s,p(Rn) of (3.93.9). Moreover, changing in the weak formulation of

the DN map (3.103.10), the function g ∈ W s,p(Rn) to g + ϕ with ϕ ∈ W̃ s,p(Ω) does
not change the value of the DN map as by construction uf solves (3.93.9). Hence, the

DN map Λσ is well-defined. Finally, by the Hölder’s inequality with p−1
p + 1

p = 1,

we have

|〈Λσ(f), g〉| ≤ C ‖dsu‖p−1
Lp(R2n,|x−y|−n) ‖dsg‖Lp(R2n,|x−y|−n)

≤ C‖f‖p−1
W s,p(Rn)‖g‖W s,p(Rn)

.

for all f, g ∈ W s,p(Rn), for some constant C > 0 independent of f and g. Hence,
taking the infimum over all representations of f, g ∈ Xs,p(Ω) and dividing by
‖g‖Xs,p(Ω), we obtain

‖Λσ(f)‖(Xs,p(Ω))∗ ≤ C‖f‖
p−1
Xs,p(Ω).

This completes the proof. �

4. Exterior reconstruction

In this section, we establish the exterior reconstruction result, which is the main
theorem of this article.

Lemma 4.1 (Exterior conditions). Let Ω ⊂ Rn be a bounded open set, 0 < s < 1,
1 ≤ p < ∞ and x0 ∈ W ⊂ Ωe for an open set W . There exists a sequence
(ΦN )N∈N ⊂ C∞c (W ) such that

(i) for all N ∈ N it holds [ΦN ]W s,p(Rn) = 1,

(ii) for all 0 ≤ t < s there holds ‖ΦN‖W t,p(Rn) → 0 as N →∞
(iii) and supp (ΦN )→ {x0} as N →∞.

Remark 4.2. Kohn and Vogelius proved a similar result in their celebrated work
on boundary determination for the conductivity equation (cf. [KV84KV84, Lemma 1] )
for the Sobolev spaces Hs(∂Ω), where Ω ⊂ Rn is an open bounded set with smooth
boundary (see also [CRZ22CRZ22, Lemma 5.5]).

Proof of Lemma 4.14.1. By translation and scaling, we may assume that Q1 ⊂ W
and x0 = 0 without loss of generality. Similarly, as in [KV84KV84], we choose any
nonzero ψ ∈ C∞c (R) with supp(ψ) ⊂ (−1, 1) and let Ψ be the n-fold tensor product
of ψ, that is Ψ(x) =

∏n
k=1 ψ(xk) with x = (x1, x2, . . . , xn). Next we define the
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sequence (ΨN )N∈N by ΨN (x) := Ψ(Nx). We clearly have ΨN ∈ C∞c (Q1/N ) and
supp(ΨN )→ {0}. Moreover, by a simple change of variables we have

(4.1) ‖ΨN‖Lp(Rn) = N−n/p‖Ψ‖Lp(Rn)

and

(4.2) [ΨN ]W t,p(Rn) = N t−n/p[Ψ]W t,p(Rn)

for all 0 < t < 1, 1 ≤ p < ∞ and N ∈ N. Observe that [Ψ]W t,p(Rn) > 0 for all
0 ≤ t < 1. This is an immediate consequence of 0 6= ψ ∈ C∞c ((−1, 1)) and the
Poincaré inequality (Theorem 2.12.1). Thus, for all 0 ≤ t < 1, 1 ≤ p <∞ there exist
constants Ct,p, C

′
t,p > 0 such that

C ′t,pN
t−n/p ≤ ‖ΨN‖W t,p(Rn) ≤ Ct,pN

t−n/p

for all N ∈ N.
Finally, we introduce for N ∈ N the rescaled functions ΦN by

ΦN :=
ΨN

[ΨN ]W s,p(Rn)

∈ C∞c (Q1/N ).

We clearly have [ΦN ]W s,p(Rn) = 1 and supp(ΦN )→ {0}. Moreover, from (4.14.1) and
(4.24.2) we deduce that

‖ΦN‖Lp(Rn) =
‖ΨN‖Lp(Rn)

[ΨN ]W s,p(Rn)

=
N−n/p‖Ψ‖Lp(Rn)

Ns−n/p[Ψ]W s,p(Rn)

= N−s
‖Ψ‖Lp(Rn)

[Ψ]W s,p(Rn)
−→ 0

and

[ΦN ]W t,p(Rn) =
[ΨN ]W t,p(Rn)

[ΨN ]W s,p(Rn)

=
N t−n/p[Ψ]W t,p(Rn)

Ns−n/p[Ψ]W s,p(Rn)

= N t−s [Ψ]W t,p(Rn)

[Ψ]W s,p(Rn)
−→ 0

as N →∞, when 0 < t < s. Hence, the sequence (ΦN )N∈N satisfies the properties
(i)(i) – (iii)(iii). �

Lemma 4.3. (Energy concentration property) Let Ω ⊂ Rn be a bounded open
set, 0 < s < 1, 1 < p < ∞ and x0 ∈ W b Ωe. Assume that (ΦN )N∈N ⊂
C∞c (W ) is a sequence satisfying the properties (i)(i) – (iii)(iii) of Lemma 4.14.1. If σ : Rn×
Rn → R satisfies the uniform ellipticity condition (1.21.2), (σ(x, ·) : W → R)x∈Rn is
equicontinuous at x0 and σ(·, x0) ∈ C(W ), then we have

σ (x0, x0) = lim
N→∞

Es,p,σ (ΦN ) .

Remark 4.4. We remark that if σ(x, y) = α(x)β(y) for some uniformly elliptic
functions α, β ∈ L∞(Rn) ∩ C(W ) then σ satisfies the assumptions of Lemma 4.34.3.

Proof of Lemma 4.34.3. First note that we can decompose σ(x, y) as

σ(x, y) = (σ(x, y)− σ(x, x0)) + (σ(x, x0)− σ(x0, x0)) +σ(x0, x0), for all x, y ∈ Rn.
This implies

Es,p,σ(ΦN ) =

ˆ
R2n

(σ(x, y)− σ(x, x0)) |dsΦN |p
dxdy

|x− y|n

+

ˆ
R2n

(σ(x, x0)− σ(x0, x0)) |dsΦN |p
dxdy

|x− y|n

+ σ(x0, x0)

ˆ
R2n

|dsΦN |p
dxdy

|x− y|n
.

(4.3)

By (i)(i) of Lemma 4.14.1, it follows that the last term is equal to σ(x0, x0). Hence, to
establish the assertion it suffice to prove that the two remaining integrals go to zero
as N →∞.
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Next observe that by the product rule for the fractional gradient (2.22.2),

|ds (ΦNψ)|p ≤ C (|ΦN (x)|p |dsψ(x, y)|p + |ψ(y)|p |dsΦN (x, y)|p) .
If ψ ∈ C1

b (Rn), then the mean value theorem yields thatˆ
Rn
|dsψ(x, y)|p dy

|x− y|n

.
ˆ
B1(x)

|ψ(x)− ψ(y)|p

|x− y|n+sp
dy +

ˆ
Rn\B1(x)

|ψ(x)− ψ(y)|p

|x− y|n+sp
dy

.‖∇ψ‖pL∞(Rn)

ˆ
B1(x)

dy

|x− y|n+p(s−1)
+ ‖ψ‖pL∞(Rn)

ˆ
Rn\B1(x)

dy

|x− y|n+sp

.

(ˆ
B1(0)

dz

|z|n+p(s−1)
+

ˆ
Rn\B1(0)

dz

|z|n+ps

)
‖ψ‖pC1(Rn)

.‖ψ‖pC1(Rn),

for all x ∈ Rn. By (ii)(ii) of Lemma 4.14.1, we have ‖ΦN‖Lp(Rn) → 0 as N → ∞, and

thus for all ψ ∈ C1
b (Rn) there holds

(4.4)

ˆ
R2n

|ΦN (x)|p |dsψ(x, y)|p dxdy

|x− y|n
. ‖ψ‖pC1(Rn) ‖ΦN‖

p
Lp(Rn) → 0

as N → ∞. Consider now a sequence of functions (ηM )M∈N ⊂ C1
c (Rn) such that

for all M ∈ N it holds 0 ≤ ηM ≤ 1, ηM |Q1/2M (x0) = 1 and ηM |(Q1/M (x0))
c = 0. If

N ∈ N is sufficiently large, then ηMΦN = ΦN and hence by using (4.44.4), we deduce

lim sup
N→∞

∣∣∣∣ˆ
R2n

(σ(x, y)− σ(x, x0))|dsΦN |p
dxdy

|x− y|n

∣∣∣∣
= lim sup

N→∞

∣∣∣∣ˆ
R2n

(σ(x, y)− σ(x, x0))|ds(ηMΦN )|p dxdy

|x− y|n

∣∣∣∣
. lim sup

N→∞

∣∣∣∣ˆ
R2n

(σ(x, y)− σ(x, x0))|ηM (y)|p|dsΦN |p
dxdy

|x− y|n

∣∣∣∣
. sup
y∈Q1/M (x0)

sup
x∈Rn

|σ(x, y)− σ(x, x0)|

for all M ∈ N, where we used (i)(i) of Lemma 4.14.1 in the last step. Using the equicon-
tinuity assumption on σ, we deduce that

lim sup
N→∞

∣∣∣∣ˆ
R2n

(σ(x, y)− σ(x, x0))|dsΦN |p
dxdy

|x− y|n

∣∣∣∣ = 0.

Similarly, we have

lim sup
N→∞

∣∣∣∣ˆ
R2n

(σ(x, x0)− σ(x0, x0))|dsΦN |p
dxdy

|x− y|n

∣∣∣∣
= lim sup

N→∞

∣∣∣∣ˆ
R2n

(σ(x, x0)− σ(x0, x0))|ds(ηMΦN )|p dxdy

|x− y|n

∣∣∣∣
. lim sup

N→∞

∣∣∣∣ˆ
R2n

(σ(x, x0)− σ(x0, x0))|ηM (x)|p|dsΦN |p
dxdy

|x− y|n

∣∣∣∣
. sup
x∈Q1/M (x0)

|σ(x, x0)− σ(x0, x0)|

for all M ∈ N. By the continuity of x 7→ σ(x, x0) it follows that the last term
vanishes as M →∞. Hence, taking the limit N →∞ in (4.34.3), we obtain

σ(x0, x0) = lim
N→∞

Es,p,σ(ΦN ).

This completes the proof. �
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Now, we observe that if uN denotes the unique solution of{
Divs(σ|dsu|p−2dsu) = 0 in Ω,

u = ΦN in Ωe,

then by writing uN = (uN − ΦN ) + ΦN ∈ W̃ s,p(Ω) +W s,p(Rn) there holds

ˆ
R2n

σ |dsuN |p
dxdy

|x− y|n
=

ˆ
R2n

σ |dsuN |p−2
dsuN dsΦN

dxdy

|x− y|n
.

Thus, by Proposition 3.93.9 we obtain

〈ΛσΦN ,ΦN 〉 =

ˆ
R2n

σ |dsuN |p
dxdy

|x− y|n
=

ˆ
R2n

σ |dsuN |p−2
dsuN dsΦN

dxdy

|x− y|n
,

so that

(4.5)

〈ΛσΦN ,ΦN 〉

=

ˆ
R2n

σ |dsΦN |p
dxdy

|x− y|n

+

ˆ
R2n

σ
(
|dsuN |p−2

dsuN − |dsΦN |p−2dsΦN

)
dsΦN

dxdy

|x− y|n
=Es,p,σ(ΦN )

+

ˆ
R2n

σ
(
|dsuN |p−2

dsuN − |dsΦN |p−2dsΦN

)
dsΦN

dxdy

|x− y|n
.

We will recover the value of σ at (x0, x0) by showing that the second term goes to
zero as N →∞. For this purpose, we show next:

Lemma 4.5. Let Ω ⊂ Rn be a bounded open set, 0 < s < 1, 1 < p < ∞ and
x0 ∈ W b Ωe. Assume that (ΦN )N∈N ⊂ C∞c (W ) is a sequence satisfying the
properties (i)(i) – (iii)(iii) of Lemma 4.14.1. Let σ : Rn × Rn → R satisfy the uniform
elliptic condition (1.21.2). Then we have

(4.6) ‖uN − ΦN‖W s,p(Rn) → 0

when N →∞, where uN ∈W s,p(Rn) is the unique solution to

(4.7)

{
Divs(σ|dsu|p−2dsu) = 0 in Ω,

u = ΦN in Ωe.

Proof. We divide the proof into the following two cases:

(i) For 2 ≤ p <∞:
By the strong monotonicity property (3.63.6), there holds

[uN − ΦN ]
p
W s,p(Rn) ≤C

ˆ
R2n

σ(|δx,yuN |p−2δx,yuN

− |δx,yΦN |p−2δx,yΦN )(δx,yuN − δx,yΦN )
dxdy

|x− y|n+sp
,

for all N ∈ N and some C > 0 only depending on n, p, λ. Next let us

introduce the auxiliary function Φ̃N := uN − ΦN ∈ W̃ s,p(Ω). Hence using

that uN solves (4.74.7) as well as that ΦN ∈ C∞c (W ) and Φ̃N have disjoint
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supports, we get

[uN − ΦN ]pW s,p(Rn)

≤C
ˆ
R2n

σ
(
|δx,yuN |p−2δx,yuN − |δx,yΦN |p−2δx,yΦN

)
δx,yΦ̃N

dxdy

|x− y|n+sp

=−C
ˆ
R2n

σ|δx,yΦN |p−2δx,yΦNδx,yΦ̃N
dxdy

|x− y|n+sp︸ ︷︷ ︸
since uN solves (4.74.7)

=− C
ˆ
R2n

σ|δx,yΦN |p−2
(

ΦN (x)Φ̃N (x) + ΦN (y)Φ̃N (y)

−ΦN (x)Φ̃N (y)− ΦN (y)Φ̃N (x)
) dxdy

|x− y|n+sp

=C

ˆ
R2n

σ|δx,yΦN |p−2
(

ΦN (x)Φ̃N (y) + ΦN (y)Φ̃N (x)
) dxdy

|x− y|n+sp

:=C(I1 + I2),

where

I1 :=

ˆ
R2n

σ|δx,yΦN |p−2ΦN (x)Φ̃N (y)
dxdy

|x− y|n+sp
,

I2 :=

ˆ
R2n

σ|δx,yΦN |p−2ΦN (y)Φ̃N (x)
dxdy

|x− y|n+sp
.

By Hölder’s inequality, the convexity of x 7→ |x|q for q > 1, and Minkowski’s
inequality, we obtain

|I1| =
∣∣∣∣ˆ

R2n

σ|δx,yΦN |p−2ΦN (x)Φ̃N (y)
dxdy

|x− y|n+sp

∣∣∣∣
≤ C

ˆ
W

ˆ
Ω

σ
(
|ΦN (x)|p−2 + |ΦN (y)|p−2

)
|ΦN (x)| |Φ̃N (y)| dydx

|x− y|n+sp

= C‖σ‖L∞(W×Ω)

ˆ
W

ˆ
Ω

|ΦN (x)|p−1 |Φ̃N (y)| dydx

|x− y|n+sp

≤ C‖σ‖L∞(W×Ω)

ˆ
W

|ΦN (x)|p−1

(ˆ
Ω

|Φ̃N (y)|
|x− y|n+sp

dy

)
dx

≤ C‖σ‖L∞(W×Ω)‖|ΦN |p−1‖
L

p
p−1 (W )

∥∥∥∥∥
ˆ

Ω

|Φ̃N (y)|
|x− y|n+sp

dy

∥∥∥∥∥
Lp(W )

≤ C‖σ‖L∞(W×Ω)‖ΦN‖p−1
Lp(W )

ˆ
Ω

|Φ̃N (y)|
(ˆ

W

dx

|x− y|(n+sp)p

)1/p

dy

= C‖σ‖L∞(W×Ω)‖ΦN‖p−1
Lp(W )

ˆ
Ω

|Φ̃N (y)|
(ˆ

W

dx

|x− y|(n+sp)p

)1/p

dy.

Now define d := dist(Ω,W ) > 0. Hence, Hölder’s and Young’s inequality
imply

|I1| ≤ C‖σ‖L∞(W×Ω)‖ΦN‖p−1
Lp(W )|Ω|

p−1
p ‖Φ̃N‖Lp(Ω)

|W |1/p

dn+sp

≤ ε‖Φ̃N‖pLp(Ω) + Cε‖σ‖
p
p−1

L∞(W×Ω)‖ΦN‖
p
Lp(W )|Ω|

|W |
1
p−1

d
p(n+sp)
p−1

,

for all ε > 0. The same estimate holds for I2 after replacing ‖σ‖L∞(W×Ω)

by ‖σ‖L∞(Ω×W ). Hence, if we choose ε > 0 sufficiently small, then by using
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Poincaré’s inequality and recalling that Φ̃N = uN − ΦN , the first term on
the right hand side can be absorbed on the left hand side to obtain

‖uN − ΦN‖pW s,p(Rn) ≤ Cε‖σ‖
p
p−1

L∞((W∪Ω)×(W∪Ω))‖ΦN‖
p
Lp(W )|Ω|

|W |
1
p−1

d
p(n+sp)
p−1

.

Now this expression goes to zero as N goes to ∞ by Lemma 4.14.1, (ii)(ii).
(ii) For 1 < p < 2:

Applying this time the strong monotonicity property (3.73.7) on uN − ΦN
gives

[uN − ΦN ]
p
W s,p(Rn)

≤C([uN ]pW s,p(Rn) + [ΦN ]pW s,p(Rn))
2−p
2

·
(ˆ

R2n

σ
(
|δx,yuN |p−2δx,yuN

−|δx,yΦN |p−2δx,yΦN
)

(δx,yuN − δx,yΦN )
dxdy

|x− y|n+sp

)p/2
,

for some C > 0 only depending on n, p and λ. As in the previous case, this
implies

[uN − ΦN ]
p
W s,p(Rn)

≤C‖σ‖L∞((W∪Ω)×(Ω∪W ))

(ˆ
R2n

|δx,yΦN |p−2(|ΦN (x)| |Φ̃N (y)|

+|ΦN (y)| |Φ̃N (x)|) dxdy

|x− y|n+sp

)p/2
≤C‖σ‖L∞((W∪Ω)×(Ω∪W ))

(ˆ
Ω

ˆ
W

|δx,yΦN |p−2|ΦN (x)| |Φ̃N (y)| dxdy

|x− y|n+sp

)p/2
=C‖σ‖L∞((W∪Ω)×(Ω∪W ))

(ˆ
Ω

ˆ
W

|ΦN (x)|p−1|Φ̃N (y)| dxdy

|x− y|n+sp

)p/2
,

where we again set Φ̃N = uN − ΦN . Here we used that uN solves (4.74.7), σ

is uniformly elliptic, [ΦN ]W s,p(Rn) = 1 and ΦN , Φ̃N have disjoint supports.
As in the previous case, this integral can be bounded from above as

[uN − ΦN ]
p
W s,p(Rn) ≤C‖σ‖L∞((W∪Ω)×(Ω∪W ))

·
(
‖ΦN‖p−1

Lp(W )|Ω|
p−1
p ‖Φ̃N‖Lp(Ω)

|W |1/p

dn+sp

)p/2
.

Applying Young’s inequality in the from ab ≤ εa2 + Cεb
2 gives

[uN − ΦN ]pW s,p(Rn) ≤ε‖Φ̃N‖
p
Lp(Ω)

+ Cε‖σ‖2L∞((W∪Ω)×(Ω∪W ))

(
‖ΦN‖p−1

Lp(W )|Ω|
p−1
p
|W |1/p

dn+sp

)p
for all ε > 0. Using Poincaré’s inequality and choosing ε sufficiently small,
we can absorb the first term on the left hand side to obtain

‖uN − ΦN‖pW s,p(Rn) ≤ Cε‖σ‖
2
L∞((W∪Ω)×(Ω∪W ))

(
‖ΦN‖p−1

Lp(W )|Ω|
p−1
p
|W |1/p

dn+sp

)p
.

By Lemma 4.14.1, (ii)(ii) again, we deduce that ‖uN − ΦN‖W s,p(RN ) → 0 as
N →∞.

This completes the proof. �
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Proposition 4.6. Suppose that the assumptions of Lemma 4.54.5 hold, then we have

lim
N→∞

ˆ
R2n

σ
(
|dsuN |p−2

dsuN − |dsΦN |p−2dsΦN

)
dsΦN

dxdy

|x− y|n
= 0.

Proof. By the estimate (3.33.3) of Lemma 3.13.1, we obtain∣∣∣∣ˆ
R2n

σ
(
|dsuN |p−2dsuN − |dsΦN |p−2

dsΦN

)
dsΦN

dxdy

|x− y|n

∣∣∣∣ . I,
where

I := ‖σ‖L∞(R2n)

ˆ
R2n

(|dsuN |+ |dsΦN |)p−2 |dsuN − dsΦN | |dsΦN |
dxdy

|x− y|n
.

We divide the cases into p ≥ 2 and 1 < p < 2.

(i) For p ≥ 2: The Hölder’s inequality implies that

I .
(
‖|dsuN |+ |dsΦN |‖p−2

Lp(R2n,|x−y|−n)

)
· ‖ds(uN − ΦN )‖Lp(R2n,|x−y|−n) ‖dsΦN‖Lp(R2n,|x−y|−n)

. ([uN ]W s,p(Rn) + [ΦN ]W s,p(Rn))
p−2[un − ΦN ]W s,p(Rn)[ΦN ]W s,p(Rn).

Since, uN ∈ W s,p(Rn) minimizes the fractional p -Dirichlet energy and
[ΦN ]W s,p(Rn) = 1, Lemma 4.54.5 shows that this term goes to zero as N →∞.

(ii) For 1 < p < 2: We obtain the same estimate fromˆ
R2n

(|dsuN |+ |dsΦN |)p−2 |dsuN − dsΦN | |dsΦN |
dxdy

|x− y|n

≤
ˆ
R2n

|dsuN − dsΦN |p−1 |dsΦN |
dxdy

|x− y|n

. ‖ds(uN − ΦN )‖p−1
Lp(Rn,|x−y|−n) ‖dsΦN‖Lp(Rn,|x−y|−n)︸ ︷︷ ︸
The Hölder’s inequality.

=[un − ΦN ]p−1
W s,p(Rn)[ΦN ]W s,p(Rn).

Here we used that p− 2 < 0 implies that

(|dsuN |+ |dsΦN |)p−2 ≤ |dsuN − dsΦN |p−2.

Arguing as in the case p ≥ 2, we see that the last expression goes to zero
as N →∞.

Hence, we can conclude the proof. �

Lemma 4.7. Let Ω ⊂ Rn be a bounded open set, 0 < s < 1, 1 < p < ∞ and
x0 ∈ W b Ωe. Assume that (ΦN )N∈N ⊂ C∞c (W ) is a sequence satisfying the
properties (i)(i) – (iii)(iii) of Lemma 4.14.1 and let σ : Rn × Rn → R satisfy the uniform
ellipticity condition (1.21.2). Then there holds

lim
N→∞

〈ΛσΦN ,ΦN 〉 = lim
N→∞

Es,p,σ(ΦN ).

Proof. As above, denote by (uN )N∈N ⊂ W s,p(Rn) the unique solutions to (4.64.6).

Now by definition of the DN map Λσ and un − ΦN ∈ W̃ s,p(Ω), there holds

〈Λσ(ΦN ),ΦN 〉 = Es,p,σ(uN ).

Now the result directly follows from (4.54.5) and Proposition 4.64.6. �

Finally, we can give the proof of Theorem 1.11.1.
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Proof of Theorem 1.11.1. First note that such a sequence (ΦN )N∈N exists by Lemma 4.14.1.
By applying Lemma 4.34.3 and 4.74.7, we deduce

σ(x0, x0) = lim
N→∞

Es,p,σ(ΦN ) = lim
N→∞

〈ΛσΦN ,ΦN 〉.

Hence, we can conclude the proof. �

5. Proofs of Proposition 1.21.2, 1.31.3 and 1.41.4

The proofs of Proposition 1.21.2, 1.31.3 and 1.41.4 can be regarded as corollaries of
Theorem 1.11.1, and we give their proofs in the end of this work.

Proof of Proposition 1.21.2. Fix some x0 ∈W , we can choose a neighborhood V of x0

such that V b Ωe and V ⊂ W . Then by Theorem 1.11.1 (with V in place of W ), we
deduce

Σj(x0) = σj(x0, x0) = lim
N→∞

〈ΛσjΦN ,ΦN 〉

for j = 1, 2. Since, the DN maps of σ1 and σ2 coincide for smooth functions
compactly supported in W , we get Σ1(x0) = Σ2(x0). As x0 ∈ W is arbitrary, we
get Σ1 = Σ2 in W . �

Proof of Proposition 1.31.3. Let x0 ∈W and choose as above a neighborhood V b Ωe
such that x0 ∈ V ⊂W . Then by Theorem 1.11.1 (with V in place of W ), we have

|Σ1(x0)− Σ2(x0)|
= lim
N→∞

|〈(Λσ1 − Λσ2ΦN ,ΦN 〉|

≤ lim sup
N→∞

‖Λσ1
− Λσ2

‖
W̃ s,p(V )→(W̃ s,p(V ))∗

‖ΦN‖W s,p(Rn)‖ΦN‖W s,p(Rn)

≤‖Λσ1
− Λσ2

‖
W̃ s,p(W )→(W̃ s,p(W ))∗

.

In the last step, we used that by Theorem 1.11.1 the sequence (ΦN )N∈N ⊂ C∞c (V )
satisfies ‖ΦN‖Lp(Rn) → 0 as N → ∞ and [ΦN ]W s,p(RN ) = 1 for all N ∈ N. Since,
x0 ∈W was arbitrary and the right hand side is independent of x0, we deduce

‖Σ1 − Σ2‖L∞(W ) ≤ ‖Λσ1 − Λσ2‖W̃ s,p(W )→(W̃ s,p(W ))∗

and we can conclude the proof. �

Proof of Proposition 1.41.4. Proposition 1.21.2 implies Σ1 = Σ2 on the nonempty open
set W ⊂ Ωe. With the real-analyticity of Σj at hand, j = 1, 2, this immediately
implies Σ1 = Σ2 in Rn. �
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Lecture Notes in Math., pages 205–227. Springer, Berlin, 1978.

[Str08] Michael Struwe. Variational methods, volume 34 of Ergebnisse der Mathematik und
ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in

Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathe-

matics]. Springer-Verlag, Berlin, fourth edition, 2008. Applications to nonlinear par-
tial differential equations and Hamiltonian systems.

[SU87] John Sylvester and Gunther Uhlmann. A global uniqueness theorem for an inverse

boundary value problem. Ann. of Math. (2), 125(1):153–169, 1987.
[SZ12] Mikko Salo and Xiao Zhong. An inverse problem for the p-Laplacian: Boundary

determination. SIAM J. Math. Anal., 44(4):2474–2495, March 2012.
[TW94a] DRS Talbot and John Raymond Willis. Upper and lower bounds for the overall

properties of a nonlinear composite dielectric. I. Random microgeometry. Proceed-

ings of the Royal Society of London. Series A: Mathematical and Physical Sciences,
447(1930):365–384, 1994. With second part [TW94bTW94b].

[TW94b] DRS Talbot and John Raymond Willis. Upper and lower bounds for the overall

properties of a nonlinear composite dielectric. II. Periodic microgeometry. Proceed-
ings of the Royal Society of London. Series A: Mathematical and Physical Sciences,

447(1930):385–396, 1994. With first part [TW94aTW94a].
[Wol07] Thomas H. Wolff. Gap series constructions for the p-Laplacian. Journal d’Analyse

Mathematique, 102(1):371–394, August 2007. Preprint written in 1984.

Indian Institute of Science Education and Research (IISER) Bhopal, India

Email address: manas@iiserb.ac.in

Department of Applied Mathematics, National Yang Ming Chiao Tung University,

Hsinchu, Taiwan
Email address: yihsuanlin3@gmail.com

Department of Mathematics, ETH Zurich, Zürich, Switzerland
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